home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Games of Daze
/
Infomagic - Games of Daze (Summer 1995) (Disc 1 of 2).iso
/
x2ftp
/
msdos
/
ai
/
nrlibe32
/
nrlib32.txt
< prev
next >
Wrap
Text File
|
1994-11-30
|
19KB
|
554 lines
ROUTINES LIBRARY
FOR
MULTIPLE NEURAL NETWORKS MANAGEMENT
(for C programs)
Version 3.2
Copyright (C) 1994 by Daniele Denaro
Daniele Denaro Internet :
Via Sergio Forti , 47 Mail: daniele@caio.irmkant.rm.cnr.it
00144 - ROMA (ITALY) ftp anonymous : kant.irmkant.rm.cnr.it
Tel. 39-6-5292189 pub/source/nrlib
INDEX
1. - Introduction 3
2. - Neural network architecture 4
2.1- Structure 4
2.2- Activation functions 6
2.3- User activation functions 7
3. - Functions list 8
4. - Example of library use 10
5. - File format of nets saving 11
6. - NREBP program 12
7. - Version 4 enhancements 13
1 - Introduction
This package contains a shell for neural networks real applications.
NRLIB32 and NREBP32 are shareware programs. You can use them to test and
verify their functionality. If you will be satisfied register you using form
in "readme.txt" file.
NRLIB32 is a software library and NREBP32 a companion program.
This software was developped in C language and is available for any
computer; but in this package is also provided compiled version for 286->486
PC systems (with math. coprocessor).
This library provide 50 functions for manage multiple neural networks in C
programs.
We can :
- Create in memory one or more nets (different too).
- Save and load all nets on/from a file
- Net compute (input propagate)
- Net train with EBP (Error Back Propagation)
or many other manipulations.
Each net can have any number of layers (to 100 layers).
Each layer can have any number of nodes.
Each node can have any number of links with others nodes.
The nodes have progressive number in a net.
You can choose a different activation function for each node.
There are ten types of activation function : 6 defined and 3 for user
definition.
For each node it's also possible to define another function named action,
which is called after the activation function.
Range of principals values:
- Net number 1 -- 1000 (in this release)
- Layer number 0 -- 99
- Node number 1 -- 7FFFFFFF (in hex)
Files included in the package:
- README.TXT Abstract and orders details
- NRLIB32.H Include file for library use. Funct. are descr.like in a manual.
- NRLIB32.OBJ Object file that you must link with your program .
- NRLIB32.C Library source
- NREBP32.EXE Complete program (interactive) for EBP net use
- NREBP32.C Source of NREBP32
- EXAMPLE1.C Example 1 of NRLIB32 use (imitation metaphor)
- EXAMPLE2.C Example 2 of NRLIB32 use (genetic algoritm)
- EXAMPLE1/2.EXE (compiled versions)
- NRLIB32.PS This document in postscript
- NRLIB32.TXT " in ASCII format (without figures)
- NETTRAIN.DAT Trainer file for XOR task
- NNETSINP.DAT Example of nets save file
- NNETXOR.DAT Example of nets save file (trained on XOR task)
2 - Neural network architecture
2.1 - Structure
A neural network is a logical structure composed by lots of nodes (neurons)
and by links (synapses) between them.
Nodes accept inputs from other nodes or external environment , and propagate
this sum to linked nodes . Input propagation is filtered by a saturation
function called activation function and by a scaling factor that corresponds
to the weight of a particular link .
Links structure and weights values identify the net behaviour , i.e. the
status of output nodes as answer of a stimulus on input nodes. Identified
the proper architecture , we can modify the weights to train a net to the
behaviour selected.
For more details on neural network architecture theory and training methods
, we remand to specialized literature.
This library allows to define any neural net architecture, but the macro-
functions for net management are made for a forward layered net, to be
trained with EBP (Error Back Propagation) rule.
The principal characteristic of this library is that it uses a sequential
list of nodes with their parameters (i.e. input , status , pointer to
activation function , pointer to links etc.), and a sequential list of all
links; this structure allow flexibility , computing speed and memory
optimisation at the same time.
For this reason each node can have different activation function or
different bias as well as different links number.
Over this organization there is another lists structure. This structure
allows to describe the whole of nets ; moreover it logically organize the
net nodes in layers.
Pointers are often used for more quickness.
Memory is dinamically allocated to according nets dimension and
availability.
In theory, layers information can be ignored , because the original net
structure in memory dasn't need layers information to run along the net.
But, even if there are routines for single node access and manipulation ,
more helpful routines are provide for use in forward nets with layers
organization . In fact , forward propagation of input and EBP training
functions are made for multilayered forward nets.
Therefore a net is typically organized in layers. First layer is layer 0 and
corresponds to net input. It is possible to have up to 100 layers (last
layer = 99). Last layer correspond to net output.
If we want the net answer to an input stimulus, we must copy input values
(in normalized floating format) to input buffer of input nodes , and , after
net computing , we can receive output answer on reading status buffer of
output nodes.
Net creation routines require an array of values for each node
characteristic . Each value is valid for all nodes of a layer , i.e. all
nodes of a layer are created equals. And each node is linked with each node
of next layer. Node bias are 0 for default and links weights are randomicaly
assigned , but you can modify them by single node functions if need it.
In the net elaboration phase , input node buffer is modified by the
activation function and the result is put in status node buffer (also
called activation).
2.2 - Activation functions
There are 6 types of activation function provided by the library. The
principals are:
- Linear funct. (simply move input to status): name f1 (useful for input nodes)
- Positive/negative sigmoid : name f3 (by table) or f13 (calculated)
- Only positive sigmoid : name f5 (by table) or f15 (calculated)
1: --
: / 1 : _ : /
: / f1 : / f3=f13 / f5=f15
........... ........... / :
/: /: -- .........
/ : - :-1 :
Functions f3 and f5 are realized by look table , with 0.01 precision , for
more speedness.
Also their derivatives are realized by look table.
Functions f13 and f15 (and their derivatives) are calculated in simple
precision ,for more accuracy.
Names are transformed in pointers on creating or loading net in memory.
Other four function names (f7,f8,f9,f10) are recognized but are provided by
user if needed (see next paragraph for more details).
Function f2,f4,f6 have been holded for compatibility with previous version
and can be seen as reserved names .
In addiction , we can define another function for a node. This function is
called "action" in this library and can be used for more sophisticated
applications as a Hebs training rule for example.
This function is user provided and the names recognised are a1 -- a6.
If function name is "0" or an unknown name , it is ignored in node
computing.
If it is defined, it is valuated after activation function.
Net training is usually performed by EBP rule. Library routines for this
purpose are very simple to use. They start with a difference < out
calculated - out expected> loaded in error node buffer of last layer and
back propagate error to first layer on correcting links weights at the same
time.
For back error propagation they use correspondent derivative of activation
function present on each node .
2.3 - User activation function
As described in previous paragraph, names allowed are: f7,f8,f9,f10 .
They are defined in NRLIB32.H file as null functions.
If user want, he may to redefine this functions in this file or in his
program.
User activation functions have four parameeters: ex. f7(int net,LONG
nn, int f,float *d)
- net number
- node number
- flag function/derivative (0 function , 1 derivative )
- pointer to derivative return value buffer
Activation functions are called by library function for forward phase and
back propragation phase.
For this reason flag is used to distinguish between forward (normal) phase
and back propagation phase. In forward phase , activation function is used
to modify input and put result in status for each node with this function.
In back propagation phase, derivative is instead used as returned value in
buffer d.
In other words, if function is called with flag f = 0 , we must modify node
input , write result in node status and blank node input (for next cicle) ;
this is forward computation.
If function is called with flag f = 1, we must calculate activation function
derivative for actual status value (we must determine derivative in
function of status value because in back propagation phase node input is
inavaillable ; it has been blanked in forward phase).
If you don't use Error Back Propagation algoritm you can put 0 on derivative
buffer.
Definition example :
Saturation : y=1- e-x dy/dx = e-x = 1- y
f7(int net , LONG nn , int f, float *d)
{
float buff;
if (f == 0) { rinp(net, nn, &buff); /* read node input (rinp :
library function) */
buff=1-exp(-buff) ; /* modify input */
wstat(net, nn, buff); /* write node status
(wstat : library function) */
winp(net, nn, 0); /* blank node input
(winp : library function) */
return ; }
if (f == 1) {rstat(net,nn,buff); /* read node status (rstat :
library function) */
*b = 1- buff ; /* derivative value */
return ; }
}
Action functions (a1 -- a6) have instead two parameters : net number and
node number ; and have free definition.
3 - Functions list
For details on functions and their parameters you can see the NRLIB32.H
file, where they are described .
Load and save nets :
loadnet (char *fileinp);
savenet (char *fileout);
Create nets :
createstruct ( tn, vlay[]);
createnet ( net,LONG vn[],char vf[][10],char va[][10]);
Create all equals nets :
createallnet ( tn, nlay,LONG vn[],char vf[][10],char va[][10]);
Reinitialise net :
ininet ( net);
Copy net to net:
copynet ( nta, ntb);
Release memory allocated for nets :
cancnets ();
Modify global parameters :
param (char *name, char *val);
Compute net :
produce ( net,char *finpdat, char *foutdat);
compute ( net,float vinp[],float vout[],float vdat[]);
propagate ( net, laya, layb);
Train net :
train ( net,char *filetrain);
learn ( net,float verr[]);
backprop ( net, laya, layb);
backproperr ( net, laya, layb);
cancerr ( net, laya, layb);
Read or modify nets parameters:
rmnet ( *totnet);
wmnet ( totnet);
rmlay ( net, *mlay);
totnn ( net, LONG *tnode);
wmlay ( net, mlay);
rlay ( net, nlay,LONG *sn,LONG *en);
Read or modify nodes parameters of a layer :
rstatl ( net, nlay,float stat[], dim);
wstatl ( net, nlay,float stat[], dim);
rinpl ( net, nlay,float inp[], dim);
winpl ( net, nlay,float inp[], dim);
rerrl ( net, nlay,float err[], dim);
werrl ( net, nlay,float err[], dim);
rbiasl ( net, nlay,float bias[], dim);
wbiasl ( net, nlay,float bias[], dim);
rwgtl ( net,LONG nn, nlayp,float wgt[], dim);
wwgtl ( net,LONG nn, nlayp,float wgt[], dim);
rwgtil ( net,LONG npp, nlaya,float wgt[], dim);
wwgtil ( net,LONG npp, nlaya,float wgt[], dim);
Read or modify single node parameters :
rstat ( net,LONG nn,float *stat);
rbias ( net,LONG nn,float *bias);
rinp ( net,LONG nn,float *inp);
rerr ( net,LONG nn,float *err);
rfun ( net,LONG nn,char fun[10],char ac[10]);
wstat ( net,LONG nn,float stat);
winp ( net,LONG nn,float inp);
werr ( net,LONG nn,float err);
wbias ( net,LONG nn,float bias);
wfun ( net,LONG nn,char fun[10],char ac[10]);
rnconn ( net,LONG nn,LONG *ncl);
rconn ( net,LONG nn,LONG cl,float *wgt ,LONG *np);
wwgt ( net,LONG nn,LONG cl,float wgt);
wnodp ( net,LONG nn,LONG cl,LONG np);
wnconn ( net,LONG nn,LONG ncl);
Version 3.2 differs from version 3.1 by bugs corrections in functions rwgtl and
wwgtl ; and activation functions f13 and f15 added
4 - Example of library use
(f5) layer 2
/ | \
Imagine that we wont to define a net / | \
of 3 layers as described in picture. (f5) (f5) (f5) layer 1
\ \/ \/ /
We must include NRLIB32.H file and \/ /\ \/
link our program with NRLIB32.OBJ. For (f1) (f1) layer 0
DOS system memory model is large.
Define array for number nodes , activation function and action function for each
layer:
LONG vn[3];char vf[3][10], va[3][10];
and initialize it
vn[0]=2; strcpy(vf[0],"f1"); strcpy(va[0],"0"); layer 0 : 2 nodes with linear
activation
vn[1]=3; strcpy(vf[1],"f5"); strcpy(va[1],"0"); layer 1 : 3 nodes with sigmoid
activation
vn[2]=1; strcpy(vf[2],"f5"); strcpy(va[2],"0"); layer 2 : 1 node with sigmoid
activation
now create net
createallnet(1,2,vn,vf,va) single net with maximum layer 2 ;
each layer characteristics done by arrays vn,vf,va
or (alternative way)
int vlay[2]; define array of maximum layer of each net
vlay[1]=2; maximum layer of net 1 (vlay[0] is not used)
createstruct(1,vlay); define structure that describe only one net
createnet (1,vn,vf,va); create net 1 of structure
Suppose that we wont to trainer this net to learn XOR function, and save net
trained.
param("ne","1000"); define 1000 epocs for training
train(1,"nnetxor.dat"); train net 1 with trainer file "nnetxor.dat"
File nnetxor.dat contain records with various input-ouput coupled according to XOR
function.
Save net trained, on file "xorout.dat"
savenet("xorout.dat");
If we wont to reuse this trained net in another program we can load it simply.
loadnet("xorout.dat");
And use it as a filter function
produce(1,"fileinp.dat","fileout.dat");
Where fileinp.dat contain input values and fileout is writed by net answers.
5 - File format of nets saving
First record
"totnets"/max_net_num/total_layers/
Other record
"nnet"/net_num/total_nodes/total_links/
or
"lay"/layer_num/
or
"node"/node_num/input/bias/stat/fun_name/ac_name/
or
"conn"/pointed_node;weigth/...../pointed_node;weigth/
example :
totnets/1/3/
nnet/1/6/9/
lay/0/
node/1/0.0000/0.0000/0.0000/f1/*/
conn/3;-0.3916/4;-0.3968/5;-0.1319/
node/2/0.0000/0.0000/0.0000/f1/*/
conn/3;-0.3734/4;-0.1154/5;-0.2262/
lay/1/
node/3/0.0000/0.0000/0.0000/f5/*/
conn/6;0.0296/
node/4/0.0000/0.0000/0.0000/f5/*/
conn/6;-0.2434/
node/5/0.0000/0.0000/0.0000/f5/*/
conn/6;0.1603/
lay/2/
node/6/0.0000/0.0000/0.0000/f5/*/
conn/
- it's possible to continue record on more lines
- each field ends with / character
- input,bias,status,weigt are float , other integer
- fun_name and ac_name are strings
6 - NREBP program
NREBP program is included in the package. This program is an interactive software
that allows us to create or load one or more nets and activate or train them.
It has 3 way of using :
- like a filter
- interactive nets management
- batch train
The 3 modalities are decided by parameeter fu (fu = 0,1,2).
In the first use , it receives an input from standard input and evaluates a net
producing an output on standard output. This is the default functionality.
At starting phase , it load nets from default nets file or user provided file.
For example , if command is :
NREBP32 /fu=0 <stimul.dat >results.dat (or NREBP32 <stimul.dat >result.dat)
it load nets from default nnetsinp.dat and activate net 1 with input read from
file stimul.dat and write output to file results.dat.
In the second use , it appears as menu driven software. It allow us to create or
load nets , compute or train them and save nets to a file.
Interactive interface dasn't need grafic device but simply text line device with
ANSI escape control characters, for better software portability.
Example of command :
NREBP32 /fu=1
To testing this program, net definition file "nnetsinp.dat" and trainer file
"nettrain.dat", for XOR task, are included in package. You can load net and train
it. Or you can load trained net by "nnetxor.dat" file, and verify corrects answers.
Third use allows us to train a nets in batch mode for a set number of epochs .
For example, if command is:
NREBP32 /fu=2 /ne=5000
it loads nets from default file nnetsinp.dat and trains net 1 reading trainer file
nettrain.dat for 5000 times; then it writes last averege quadratic error and saves
nets to default file nnetsout.dat.
For more details ask help typing : NREBP32 /h
7 - Version 4 enhancements
This version is already available ; for any request contact me (see file
README.TXT).
Functions available increase to 59.
More complex logic structure is definable for a net.
With simple routines like "createnet", "compute", "learn" etc. , we can
manage net with memory contest layer or recursive layer.
Each layer can be linked with more layers (to 10) , no more with following
layer only.
Each layer can have a pointer to a layer that realize a memory contest.
Each layer can have a pointer to a layer that realize a duplicated layer.
Before starting compute phase , library routine, copies nodes status of a
layer to input buffer of the contest memory layer correspondent.
For layer duplicated , compute routine , copies nodes status of the layer
to the nodes status of layer duplicated at the same time when compute it.